SIMPLIFICATION OF LOGICAL FUNCTION USING KARNAUGH MAP (K-MAP):

Karnaugh Map (k-map) Introduction

- A Boolean expression may have many different forms.
- With the use of K-map, the complexity of reducing expression becomes easy and Boolean expression obtained is simplified.
- K-map also be said as pictorial form of truth table.
- K-map is alternative way of simplifying logic circuits.
- Instead of using Boolean algebra simplification techniques, you can transfer logic values from a Boolean statement or a truth table into a Karnaugh map (k-map)
- Tool for representing Boolean functions of up to six variables.
- K-maps are tables of rows and columns with entries represent 1's or 0's of SOP and POS representations.
- K-map cells are arranged such that adjacent cells correspond to truth rows that differ in only one bit position (*logical adjacency*)
- K-Map are often used to simplify logic problems with up to 6 variables
- No. of Cells = 2^n , where n is a number of variables.
- The Karnaugh map is completed by entering a '1' (or '0') in each of the appropriate cells.
- Within the map, adjacent cells containing 1's (or 0's) are grouped together in twos, fours, or eights and so on.

2 variable k-map

- For 2 variable k-map, there are $2^2 = 4$ input combinations.
- If A & B are two variables then;

SOP
$$\rightarrow$$
 Minterms \rightarrow A'B' (m₀, 00); A'B (m₁, 01); AB' (m₂, 10); AB (m₃, 11)
POS \rightarrow Maxterms \rightarrow A + B (M₀, 00); A + B' (M₁, 01); A' + B (M₂, 10); A' + B' (M₃, 11)

> Mapping of SOP Expression:

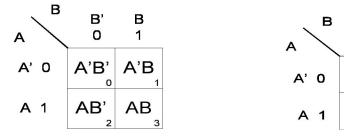
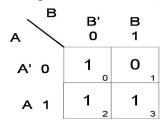


Fig.: Mapping of SOP form for two variable K-Map

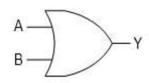
B'

0

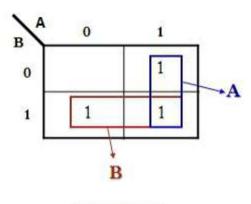
 m_0


 m_2

В


 m_1

 m_3

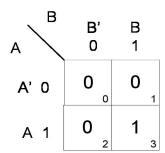

- 1 in a cell indicates that the minterm is included in Boolean expression.
- For e.g. if $F = \sum m(0, 2, 3)$, then 1 is put in cell no. 0, 2, 3 as shown below.

Ex.: Map for a 2-input OR gate.

A	В	X
0	0	0
0	1	1
1	0	1
1	1	1

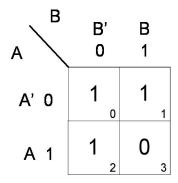
Ex.: Map for a 2-input EX-OR gate.

В	X
0	1 → AB
1	0
0	0
1	1 → AB
	0

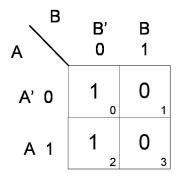

,	B	В
Ā	1	0
А	0	1

$$\mathbf{F} = \mathbf{A'B'} + \mathbf{AB}$$

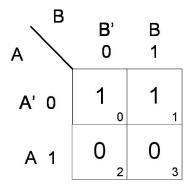
> Map following SOP expressions:


$$\mathbf{E}\mathbf{x}$$
.: $\mathbf{F} = \mathbf{A}\mathbf{B}$

Solution:


$$Ex. : F = AB' + A'B + A'B'$$

Solution:


Ex.:
$$F(A, B) = \sum (0, 2)$$

Solution:

$$E_{x.}: F = m_0 + m_1$$

Solution:

